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ABSTRACT
Background: Metabolomics is an emerging field with the potential
to advance nutritional epidemiology; however, it has not yet been
applied to large cohort studies.
Objectives: Our first aim was to identify metabolites that are bio-
markers of usual dietary intake. Second, among serum metabolites
correlated with diet, we evaluated metabolite reproducibility and
required sample sizes to determine the potential for metabolomics
in epidemiologic studies.
Design: Baseline serum from 502 participants in the Prostate, Lung,
Colorectal, and Ovarian (PLCO) Cancer Screening Trial was ana-
lyzed by using ultra-high-performance liquid-phase chromatography
with tandem mass spectrometry and gas chromatography–mass spec-
trometry. Usual intakes of 36 dietary groups were estimated by using
a food-frequency questionnaire. Dietary biomarkers were identified
by using partial Pearson’s correlations with Bonferroni correction for
multiple comparisons. Intraclass correlation coefficients (ICCs) be-
tween samples collected 1 y apart in a subset of 30 individuals were
calculated to evaluate intraindividual metabolite variability.
Results:We detected 412 known metabolites. Citrus, green vegetables,
red meat, shellfish, fish, peanuts, rice, butter, coffee, beer, liquor, total
alcohol, and multivitamins were each correlated with at least one me-
tabolite (P , 1.093 3 1026; r = 20.312 to 0.398); in total, 39 dietary
biomarkers were identified. Some correlations (citrus intake with sta-
chydrine) replicated previous studies; others, such as peanuts and tryp-
tophan betaine, were novel findings. Other strong associations included
coffee (with trigonelline-N-methylnicotinate and quinate) and alcohol
(with ethyl glucuronide). Intraindividual variability in metabolite levels
(1-y ICCs) ranged from 0.27 to 0.89. Large, but attainable, sample sizes
are required to detect associations between metabolites and disease in
epidemiologic studies, further emphasizing the usefulness of metabo-
lomics in nutritional epidemiology.
Conclusions: We identified dietary biomarkers by using metab-
olomics in an epidemiologic data set. Given the strength of the
associations observed, we expect that some of these metabolites
will be validated in future studies and later used as biomarkers in
large cohorts to study diet-disease associations. The PLCO trial
was registered at clinicaltrials.gov as NCT00002540. Am J
Clin Nutr 2014;100:208–17.

INTRODUCTION

Diet is a modifiable risk factor for chronic disease; however,
epidemiologic studies do not consistently support associations

between specific foods or nutrients and disease endpoints. Most
epidemiologic studies rely on self-reported dietary assessment
methods that are subject to recall bias and measurement error (1–
3). There is a pressing need for dietary biomarkers to better
capture exposure; however, few have been identified to date (4).

Metabolomics, the measurement of small molecules in
biofluids, may more precisely define dietary exposures and
thus provide better estimates of disease risk in epidemiologic
studies. Metabolomics accounts for variability in metabolism,
because of lifestyle or genetics for example, by measuring
downstream components or metabolic products of foods;
therefore, metabolites may better reflect “true exposure.”
Metabolites may also capture exposure to nonnutritive sub-
stances, such as pesticides and compounds generated by
cooking (5), which may play important roles in disease etiology.

Untargeted metabolomics in small dietary intervention and
cohort studies has identified some novel potential dietary bio-
markers (6). Although recent studies have shown that metab-
olomics can be successfully applied to dietary research (7), most
studies (8–10) were small dietary interventions. Traditionally,
dietary biomarkers have been identified and validated in feeding
studies, but markers thus identified may not perform well as
proxies for usual food intake—the exposure considered to be
most etiologically relevant—in a population study. If the bio-
marker has a short half-life or if the food of interest is consumed
only infrequently levels detected at the time of actual bio-
specimen collection may not proxy usual intake. A recent citrus
feeding study, for example, identified .600 ions associated with
acute citrus consumption; however, only 12 ions were associated
with usual dietary citrus consumption in a free-living population
(10). A recent metabolomics study determined that groups of
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serum metabolites are associated with patterns of dietary intake,
although the authors only investigated 127 metabolites which
were limited to acylcarnitines and choline-containing phospho-
lipids (11). An agnostic approach that measures hundreds of
metabolites has the benefit of identifying novel findings that may
not have been previously considered.

With the use of biospecimens and data collected from partic-
ipants in the Prostate, Lung, Colorectal, and Ovarian (PLCO)4

Cancer Screening Trial, our objectives were as follows: 1) to
identify serum metabolites that are correlated with self-reported
dietary intake and 2) to determine whether metabolomics is
a promising and feasible tool to identify associations in nutritional
epidemiology by determining metabolite reproducibility and re-
quired sample sizes for epidemiologic studies.

SUBJECTS AND METHODS

Study population

The PLCOCancer Screening Trial is a multicenter randomized
screening trial that randomly assigned .150,000 US men and
women between 1993 and 2001 to a screening or control arm
(12). Eligibility requirements included age 55–74 y at baseline
and no previous history of prostate, lung, colorectal, or ovarian
cancer. Demographic and lifestyle characteristics were assessed
at baseline by a self-administered questionnaire.

We used metabolomics data from a nested case-control study
within PLCO, the details of which are briefly presented here.
Within the screening arm of the trial, individuals with the following
characteristics were excluded: self-reported history of cancer at
baseline (except for basal cell skin cancer) (n = 4924); ,6 mo of
follow-up (n = 168 additional individuals); rare cancer during
follow-up (n = additional 1074 individuals); self-reported Crohn
disease, ulcerative colitis, familial polyposis, Gardner syndrome,
or colorectal polyps (n = additional 6429 individuals); or no
baseline serum sample (n = additional 2866 individuals). Among
remaining participants, those who completed baseline dietary and
risk factor questionnaires and consented for biospecimen use (n =
52,705) were eligible for metabolomics assays; of these, 255 in-
cident colorectal cancer cases (diagnosed at least 6 mo after
baseline) and 254 matched controls were incidence-density
sampled and matched according to age, sex, race, randomization
year, and season of blood draw. Controls were alive and cancer-
free at time of cancer diagnosis for the matched cases. Seven
participants were excluded from analyses because of incomplete
($8 missing responses; n = 5) and/or inaccurate (extreme caloric
consumption; n = 3) dietary data from a food-frequency ques-
tionnaire (FFQ), resulting in a final sample size of 502 in-
dividuals. The PLCO trial was approved by the institutional
review boards of the US National Cancer Institute and the 10
screening centers, and all participants provided informed consent.
All participants (n = 502) contributed baseline serum samples; in
addition, serum collected 1 y after baseline was also measured in
30 controls to calculate within-individual variability.

Dietary assessment

In the screening arm of the trial, usual dietary intake was
assessed at baseline by using the National Cancer Institute’s self-
administered and validated 137-item FFQ (http://www3.cancer.
gov/prevention/plco), which captured information on typical fre-
quency of intake during the past year (13). Food items of un-
specified content (eg, lasagna) were excluded from analyses,
because correlations for unknown foods were considered un-
informative for these purposes. Data on single-nutrient dietary
supplements were excluded given that we were primarily interested
in food sources of metabolites; however, we considered multivita-
min use (yes or no) in our analyses. Thus, in total, 111 items of
interest comprising food, beverage, and multivitamin/supplement
intakes were considered in this study; analyses focused on 36 di-
etary groups constructed by combining food items with similar
properties. These 36 categories were based primarily on the
USDA’s MyPlate classification, but categories were further divided
according to biological components of foods (14). Dietary intake
from the FFQ was converted to grams per day by multiplying self-
reported frequency of intake by portion size; portion sizes were
assigned a gram amount on the basis of national dietary data from
the USDA (1994–1996 Continuing Survey of Food Intakes by
Individuals) for each sex (15). For items for which serving size was
not queried on the FFQ (eg, fruits and vegetables), an average
(“medium”) portion size was assigned. Hereafter, dietary intake
refers to grams per day unless otherwise specified.

Diet quality was assessed by using the Healthy Eating Index
(HEI) 2010 (16), which contains 12 components that capture an
individual’s compliance to the key 2010 Dietary Guidelines for
Americans (17); 9 HEI components focus on the adequacy of the
diet (eg, higher intakes of fruit, vegetables, greens, whole grains,
dairy, total protein, seafood and plant protein, and fatty acids) and
3 focus on moderation (eg, lower consumption of refined grains,
sodium, and empty calories) (16). We calculated HEI scores for
each individual on the basis of his or her self-reported diet and
according to established methods (16); possible scores range from
0 to 100, with higher scores indicating higher diet quality.

Metabolite assessment

Serum metabolites (w,1000 Da) were assayed from baseline
serum samples by Metabolon Inc, whose platform and pro-
cedures have been previously described (18, 19). Briefly, ultra-
high-performance liquid chromatography–mass spectrometry and
tandem mass spectrometry, in addition to gas chromatography
coupled with mass spectrometry, were used to identify peaks.
Mass spectral peaks, retention times, and m/z were determined by
using a chemical reference library generated from 2500 standards,
and these values were used to determine the identity of individual
metabolites as well as their relative quantities.

One batch of 30 samples was analyzed each day, and batch and
position within a batch were randomly assigned. Matched cases
and controls were arranged as consecutive samples within a batch
and the order of case compared with control was counterbalanced
within each batch. Replicate aliquots from a separate source of
pooled serum were randomly inserted into each batch at a level
of 10% and served as blinded quality-control samples. In ad-
dition, a standard sample was inserted by Metabolon every sixth
sample.

4Abbreviations used: FDR, false discovery rate; FFQ, food-frequency ques-

tionnaire; HEI, Healthy Eating Index; ICC, intraclass correlation coefficient;

PLCO, Prostate, Lung, Colorectal, and Ovarian.
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Although our case-control pairs were randomly assigned to
their batch, metabolite values were batch normalized by di-
viding each individual metabolite value by the batch mean (of
nonmissing values) to account for small day-to-day drifts in
chromatogram performance. Metabolites were log-transformed
(natural log), values below the detection threshold were set to
the minimum observed value, and the distribution was cen-
tered; hereafter, metabolite level refers to these transformed
values. Metabolites whose levels were below the detectable
limit for.95% of study participants were excluded from analyses.

Statistical analysis

Demographic characteristics and dietary intakes for cases and
controls were compared by using 2-sided statistical tests (chi-
square test for categorical variables, Wilcoxon rank-sum test for
continuous variables). Correlations between diet and metabo-
lites were investigated through partial Pearson’s correlations
adjusted for age, sex, smoking status (current smokers com-
pared with former/never smokers), and total energy intake
(kcal/d). HEI correlations were additionally adjusted for recent
(now or within the past 2 y) supplement use (multivitamin or
single-nutrient supplement). To account for multiple compar-
isons, we used Bonferroni correction of the P values by the
number of metabolites measured. Metabolite correlations with
dietary groups were adjusted at 0.05/(number of known me-
tabolites investigated 3 number of food items), and correla-
tions with HEI score were adjusted at 0.05/number of known
metabolites. Moreover, we estimated the total number of me-
tabolites associated with each dietary group at given false
discovery rates (FDRs) (20), given that Bonferroni correction
could be overly conservative (21). Finally, we estimated the
correlation between each food item and an optimized linear
combination of metabolite levels. The coefficients for the
linear combination were chosen by applying Lasso (22) re-
gression to cross-validation training sets (penalty chosen by
10-fold cross-validation within the training set), and the cor-
relation was based on comparing the resulting predicted
values to the observed values in the cross-validation test sets.
The final estimates, an average of the estimated correlations
across all test sets, are therefore unbiased. The SE of the es-
timated correlation was calculated by using the “approxi-
mating r” method developed by Nadeau and Bengio (23).

We investigated the influence of self-reported frequency of
intake and portion size on metabolite levels by creating box plots.
Congruence between metabolite levels and dietary intake was
assessed by Spearman rank correlations and k statistics.

We conducted stratified analyses by sex, age, geographic
location of study center, disease status, stage of colorectal
cancer, and length of follow-up at time of colorectal cancer
diagnosis. We used serum samples collected 1 y after baseline
from 30 individuals to calculate intraclass correlation coef-
ficients (ICCs), a measure of within-individual variability. The
pooled quality-control serum samples were used to calculate
intraassay CVs, which were averaged over all individuals to
determine technical reproducibility by the laboratory. Analyses
used SAS software, version 9.1.3 (SAS Institute), with the
exception of the FDR plots, which used R (R Project, version
2.15.2) (24).

Variance components

We decomposed the total variance, s2
T , of each metabolite in-

to 3 different components: the between-subject variance, s2
B,

which was also considered the variance of the “usual” level in
a population; the within-subject variance, s2

W , which reflected
the 1-y variability around the “usual” level within an individu-
al; the technical variance or laboratory reproducibility, s2

E ,
which was the expected variance from 2 identical samples:
s2
T ¼ s2

B þ s2
W þ s2

E . We defined the ICC as follows:

ICC ¼ ðr2B þ r2W ÞOr2T ¼ 12 ðr2EOr2T Þ ð1Þ

For each metabolite, variance components and corresponding
ICCs were estimated from a mixed model.

Estimating sample size needed in future studies

Our second objective was to estimate the number of in-
dividuals needed for a 1:1 case:control study to have a power of
0.8 to detect an association between each metabolite and a dis-
ease, accounting for s2

W and s2
E and the testing of multiple

metabolites. We focused on the metabolites that are most sig-
nificantly associated with each dietary group. We defined the
effect size for a given metabolite to be the RR of disease for an
individual in the top quartile of the usual metabolite levels, as
compared with the bottom quartile. We assumed that studies will
use a t test, with the appropriate Bonferroni-corrected signifi-
cance threshold, to test for an association between the disease
and each metabolite. We then estimated the total number of
individuals needed to detect a metabolite with a power of 0.8,
given the within-individual variability and assumed effect size.
Further details can be found elsewhere (25) and in the Supple-
mental Appendix under “Supplemental data” in the online issue.

RESULTS

Baseline demographic characteristics of the 502 participants
are shown in Table 1. Mean age was 64 y, and the sample was
largely white. The sample included primarily former (48%) or
never (44%) smokers. Demographic characteristics were similar
for cases and controls (Supplemental Table 1 under “Supple-
mental data” in the online issue). There were no differences in
most characteristics; although there was a significant difference in
BMI (P = 0.018), the magnitude of difference in mean (6SD)
BMI (in kg/m2; 286 5 compared with 276 4) was modest. Self-
reported usual dietary intake, estimated from the FFQ, is shown in
Table 2. There was no difference in self-reported dietary intake
between cases and controls (Supplemental Table 2 under “Sup-
plemental data” in the online issue). Given these similarities and
because disease was not a primary interest of this study, we
combined cases and controls in all subsequent analyses.

Identification of biomarkers of diet

We detected 412 metabolites of known identity and 231
metabolites of unknown identity (26–28). An additional 14
known metabolites were excluded from analyses because of
nondetectable levels in .95% of individuals. Among the 643
metabolites analyzed, the median percentage of individuals with
nondetectable levels was 4%. Correlations between all 36 di-
etary groups and known metabolites are shown in Table 3; all
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significant correlations are shown, as well as the strongest, albeit
nonsignificant, correlations for dietary groups with no signifi-
cant findings. We identified 39 correlations between dietary
groups and known metabolites that were significant at the
Bonferroni-corrected level of P , 1.093 3 1026 [P = 0.05/(111
foods 3 412 identified metabolites)]; these correlations repre-
sented 13 dietary groups including citrus, green vegetables, red
meat, fish, shellfish, butter, peanuts, rice, coffee, beer, liquor, total
alcohol, and multivitamins (Table 3). Most of the findings were
for exogenous metabolites derived from their food sources.

Our strongest findings—those with a P , 1 3 10210— were
for multivitamins, citrus, fish, peanuts, coffee, and alcohol (Table
3). Multivitamins were correlated with serum vitamin E (positive
correlation with a-tocopherol and a corresponding negative cor-
relation with g-tocopherol) and 2 vitamin B metabolites (pyr-
idoxate and pantothenate). Citrus fruit were correlated with
stachydrine (r = 0.398), chiro-inositol (r = 0.301), scyllo-inositol
(r = 0.298), and N-methyl proline (r = 0.298). Fish was
positively correlated with 3-carboxy-4-methyl-5-propyl-2-
furanpropanoic acid (r = 0.322) and moderately correlated with
DHA (r = 0.260) and EPA (r = 0.244), 2 omega-3 fatty acids
present in fish oils. In addition to correlations with fish, DHA
was also correlated with rice consumption (r = 0.270) and
3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid was corre-
lated with green vegetable (r = 0.222) and shellfish (r = 0.238)
consumption. Even food groups typically consumed in low

quantities had significant associations with metabolites: for ex-
ample, peanuts were associated with 2 metabolites, tryptophan
betaine (r = 0.352) and 4-vinylphenol sulfate (r = 0.279). For
those metabolites associated with particular food groups, the
median metabolite levels increased as the self-reported frequency
of intake and serving size increased (Supplemental Figure 1 under
“Supplemental data” in the online issue). There was reasonable
congruence between quartile of metabolite levels and quartile of

TABLE 1

Demographic characteristics of participants in a metabolomics study

nested within the PLCO Cancer Screening Trial1

Characteristic Value

Sex [n (%)]

Men 281 (56)

Women 221 (44)

Age (y) 64 6 52

Race [n (%)]

White 474 (94)

Smoking status [n (%)]

Current 42 (8)

Former 240 (48)

Never 220 (44)

Education3 [n (%)]

High school or less 167 (33)

Post–high school/some college 159 (32)

College/postgraduate 175 (35)

Total energy intake (kcal/d) 2068 6 819

BMI4 (kg/m2) 27 6 5

HEI 20105

Total 52.81 (29.75–87.49)6

Quintile

1 43.96 (29.75–47.55)

2 49.63 (47.58–51.11)

3 52.81 (51.13–54.87)

4 57.30 (54.94–63.74)

5 72.00 (63.82–87.49)

1 n = 502. HEI, Healthy Eating Index; PLCO, Prostate, Lung, Colorec-

tal, and Ovarian.
2Mean 6 SD (all such values).
3One participant was missing data on education.
4 Four participants were missing data on BMI.
5 Possible total HEI score: range of 0–110.
6Median; range in parentheses (all such values).

TABLE 2

Self-reported usual dietary consumption in a nested study within the PLCO

Cancer Screening Trial1

Category and dietary group Value

Fruit (g/d)

Citrus: oranges, orange juice, grapefruit 109 (35–218)2

Berries: strawberries 3 (1–4)

Apples, pears 29 (14–60)

Melon: watermelon, cantaloupe 3 (1–7)

Bananas 31 (9–78)

Other: plums, apricots, peaches, prunes,

raisins, grapes, pineapples

38 (19–62)

Vegetables (g/d)

Cruciferous: broccoli, cabbage, Brussels sprouts,

cauliflower, turnip greens, mustard greens, collards,

kale, swiss chard

28 (15–51)

Greens: lettuce, spinach, green peppers 32 (18–55)

Yellow/orange vegetables: carrots, tomatoes,

sweet potatoes, beets

72 (47–110)

Starchy vegetables: white potatoes, corn, peas 74 (42–113)

Alliums (garlic, onions) 9 (4–15)

Other: celery, green beans, squash, cucumbers 49 (27–74)

Meat/fish (g/d)

Red meat (includes processed) 61 (32–105)

Poultry: chicken 21 (12–43)

Fish (excluding shellfish) 17 (9–32)

Shellfish 1 (0–2)

Processed meat: cold cuts, hot dogs, bacon, sausage 7 (3–19)

Snack foods (g/d)

Baked sweets 20 (10–38)

Chocolate 1 (0–4)

Candy (nonchocolate) 1 (0–3)

Chips 2 (1–8)

Other foods (g/d)

Tofu 0 (0–1)

Beans 19 (11–33)

Eggs 7 (3–19)

Added fats: butter, salad dressing, vegetable oil

spreads, margarine

9 (4–17)

Butter 0 (0–2)

Peanuts 3 (1–9)

Rice (white) 11 (2–20)

Beverages (g/d)

Dairy: milk 277 (158–473)

Coffee 843 (205–899)

Sugar-sweetened beverages: soda, fruit punch 9 (3–145)

Beer 7 (0–69)

Wine 1 (0–12)

Liquor 1 (0–4)

Total alcohol 2 (0–15)

Reported multivitamin use [n (%)]3 241 (48)

1 n = 502. PLCO, Prostate, Lung, Colorectal, and Ovarian.
2Median; 25th–75th percentile range in parentheses (all such values).
3 Seven participants were missing report of multivitamin use.
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TABLE 3

Top metabolites associated with dietary groups in a nested case-control study within the PLCO Cancer Screening Trial1

Category and dietary group Metabolite Correlation (r) P

Fruit

Citrus: oranges, orange juice, grapefruit Stachydrine 0.398 2.23 3 10220*

Chiro-inositol 0.301 7.28 3 10212*

Scyllo-inositol 0.298 1.13 3 10211*

N-methyl proline 0.298 1.15 3 10211*

Berries: strawberries 1-Palmitoylglycero-phospho-inositol 20.132 3.00 3 1023

Apples, pears 13-HODE + 9-HODE 20.141 2.00 3 1023

Melon: watermelon, cantaloupe Pregnenolone sulfate 20.156 4.82 3 1024

Bananas g-Tocopherol 20.200 6.93 3 1026

Other: plums, apricots, peaches, prunes, raisins, grapes,

pineapple

Pyridoxate 0.205 3.98 3 1026

Vegetables

Cruciferous: broccoli, cabbage, Brussels sprouts,

cauliflower, turnip greens, mustard greens, collards,

kale, swiss chard

a-CEHC glucuronide 0.149 8.32 3 1024

Greens: lettuce, spinach, green peppers CMPF 0.222 5.52 3 1027*

Yellow/orange vegetables: carrots, tomatoes, sweet

potatoes, beets

Creatinine 0.123 6.00 3 1023

Starchy vegetables: white potatoes, corn, peas Cyclo (-Leu-Pro) 20.143 1.34 3 1023

Alliums (garlic, onions) CMPF 0.182 4.23 3 1025

Other: celery, green beans, squash, cucumbers DHA 0.161 3.22 3 1024

Meat/fish

Red meat Indolepropionate 20.221 6.14 3 1027*

Poultry: chicken Pyroglutamine 20.176 7.77 3 1025

Fish (excluding shellfish) CMPF 0.322 1.80 3 10213*

DHA 0.260 3.87 3 1029*

EPA 0.244 3.44 3 1028*

1-Docosahexaenoylglycero-phosphocholine 0.237 8.27 3 1028*

Shellfish CMPF 0.238 7.69 3 1028*

Processed meat: cold cuts, hot dogs, bacon, sausage Lathosterol 0.180 5.39 3 1025

Snack foods

Baked sweets Glutamine 0.182 4.40 3 1025

Chocolate Theobromine 0.164 2.28 3 1024

Candy (nonchocolate) Leucylleucine 0.161 3.00 3 1024

Chips DHA 20.133 2.90 3 1023

Other

Tofu 4-Ethylphenylsulfate 0.188 2.43 3 1025

Beans S-Methylcysteine 0.168 1.72 3 1024

Eggs Indolepropionate 20.161 3.11 3 1024

Added fats: butter, salad dressing, vegetable oil spreads,

margarine

d-Tocopherol 0.192 1.55 3 1025

Butter2 Methyl palmitate (15 or 2) 0.262 2.97 3 1029*

Pentadecanoate (15:0) 0.248 2.06 3 1028*

10-Undecenoate (11:1n–1) 0.230 2.05 3 1027*

Peanuts Tryptophan betaine 0.352 6.21 3 10216*

4-Vinylphenol sulfate 0.279 2.39 3 10210*

Rice (white) DHA 0.270 9.51 3 10210*

Beverages

Dairy: milk Homostachydrine 0.173 1.00 3 1024

Coffee Trigonelline (N#-methylnicotinate) 0.424 3.36 3 10223*

Quinate 0.372 8.00 3 10218*

1-Methylxanthine 0.299 9.04 3 10212*

Paraxanthine 0.270 8.87 3 10210*

N-2-furoyl-glycine 0.264 2.30 3 1029*

Catechol sulfate 0.232 1.58 3 1027*

Sugar-sweetened beverages: soda, fruit punch Quinate 20.177 7.21 3 1025

Beer 16-Hydroxypalmitate 0.221 6.30 3 1027*

Wine Scyllo-inositol 0.200 7.19 3 1026

Liquor Ethyl glucuronide 0.295 1.85 3 10211*

Total alcohol3 Ethyl glucuronide 0.360 1.04 3 10216*

4-Androsten-3b,17b-diol disulfate 1 0.289 5.31 3 10211*

(Continued)
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dietary intake for the main associations we observed (Supple-
mental Table 3 under “Supplemental data” in the online issue).

Many beverages, including coffee, beer, liquor, and total al-
cohol, each had at least one significant metabolite biomarker,
with much stronger correlations among liquor and total alcohol
compared with beer (Table 3). Interestingly, although the me-
tabolites associated with beer and liquor (16-hydroxypalmitate
and ethyl glucuronide, respectively) were also associated with
total alcohol intake, total alcohol (combining beer, wine, and
liquor) had many significant correlations, some of which are
involved in lipid pathways, which were not significant for the
individual components. Coffee had very strong correlations with
trigonelline N#-methylnicotinate (r = 0.424), quinate (r = 0.372),
1-methylxanthine (r = 0.299), and paraxanthine (r = 0.270), with
an additional 2 moderate correlations with N-2-furoyl-glycine
(r = 0.264) and catechol sulfate (r = 0.232).

We attempted to create better predictors of the questionnaire-
based measures by combining information across multiple me-
tabolites. For most food items, the correlation between the food
item and the multimetabolite prediction score was of similar
magnitude to the correlation between that food item and the most
strongly associated metabolite (Supplemental Table 4 under
“Supplemental data” in the online issue). However, there was
a noted improvement when using the predictive score for butter
[r = 0.34 for the multimetabolite score; max(r) = 0.26 for
a single metabolite], beer (0.31 compared with 0.22), and red
meat (0.37 compared with 0.22).

We also analyzed the metabolites that wewere unable to name.
Twenty-four unidentified metabolites were significantly corre-
lated with dietary groups (Supplemental Table 5 under “Sup-
plemental data” in the online issue; with correlations ranging
from 20.23 to 0.39); all food groups correlated with unknown
metabolites were also significantly correlated with identified
metabolites. In more detailed analyses, we also examined cor-
relations between metabolites and the 111 individual food items

that formed the dietary groups in the main analyses; results did
not appreciably differ from the results for food groups (data
not shown). In stratified analyses, the diet-metabolite cor-
relations were consistent across sex (Supplemental Table 6
under “Supplemental data” in the online issue), age (Sup-
plemental Table 6 under “Supplemental data” in the online
issue), and geographical location of the study center (Sup-
plemental Table 7 under “Supplemental data” in the online
issue).

In sensitivity analyses in colorectal cancer cases and controls
separately, the main correlations we observed between me-
tabolites and dietary groups did not differ by disease status
(Supplemental Table 8 under “Supplemental data” in the online
issue). Overall, the direction and magnitude of diet-metabolite
correlations did not differ appreciably by stage of colorectal
cancer (Supplemental Table 9 under “Supplemental data” in
the online issue) or length of follow-up time at colorectal
cancer diagnosis (Supplemental Table 9 under “Supplemental
data” in the online issue). In particular, associations between
metabolites and citrus, coffee, and alcohol were robust in all
sensitivity analyses.

Investigating dietary exposures by an overall index, we
found that the median total HEI score was 53 (range: 30–87,
out of possible 100 with a higher score indicating better diet
quality) (Table 1). There were 5 significant metabolite cor-
relations at the Bonferroni-corrected level of P , 1.214 3
1024 (P = 0.05/412 identified metabolites) (Table 4), including
a negative correlation with g-tocopherol. Overall, correlations
unadjusted for supplement use were similar to adjusted results
but generally stronger, and 15 of the top 20 metabolite corre-
lations remained among the strongest correlations regardless of
adjustment (data not shown). Many of the correlations associ-
ated with HEI score represented vitamins, including vitamin E
and constituents or metabolites of vitamins B (pantothenate,
pyridoxate) and C (threonate).

TABLE 3 (Continued )

Category and dietary group Metabolite Correlation (r) P

5-a-Androstan-3b,17b-diol disulfate 0.254 9.21 3 1029*

Cyclo (-Leu-Pro) 0.249 1.84 3 1028*

Bilirubin (E,Z or Z,E) 0.243 3.75 3 1028*

16-Hydroxypalmitate 0.239 6.57 3 1028*

Dihomo-linoleate (20:2n–6) 0.230 2.12 3 1027*

Palmitoleate (16:1n–7) 0.230 2.15 3 1027*

Vitamins/supplements

Multivitamins Pantothenate 0.541 3.36 3 10239*

Pyridoxate 0.433 3.67 3 10224*

a-Tocopherol 0.368 2.04 3 10217*

g-Tocopherol 20.312 1.02 3 10212*

Threonate 0.268 1.16 3 1029*

b-Tocopherol 20.233 1.42 3 1027*

1 n = 502. The untargeted approach investigated all identified metabolites and dietary groups captured by food-frequency questionnaire; all significant

correlations are indicated with an asterisk. For dietary groups with no significant associations, only the strongest association is shown. Partial Pearson

correlations adjusted for age, sex, smoking status (current smokers, former/never smokers), and total energy intake (kcal/d). Significance was defined as the

Bonferroni-corrected level of P , 1.093 3 1026 (111 food items 3 412 identified metabolites, at the 0.05 level). CMPF, 3-carboxy-4-methyl-5-propyl-2-

furanpropanoic acid; PLCO, Prostate, Lung, Colorectal, and Ovarian; 9-HODE, 9-hydroxy-10,12-octadecadienoic acid; 13-HODE, 13-hydroxy-9,11-octade-

cadienoic acid; a-CEHC, 2,5,7,8-tetramethyl-2(2#-carboxyethyl)-6-hydroxychroman.
2Butter was also included in the added fats/oils group.
3Total alcohol is the combination of beer, wine, and liquor (in g/d); beer, wine, and liquor are also presented as separate groups.
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Implications for future study design

Although only 39 metabolites were conclusively determined to
be associated with diet, there was clear evidence that a much
larger percentage was correlated with usual dietary intake. The
total number of metabolites associated with each food group at
various FDR thresholds is shown in Figure 1. Approximately
130 metabolites associated with total alcohol consumption met
the FDR threshold of 0.20, and w85 of these met the 0.05
threshold (Figure 1). Beer also had a large number of metabolite
correlations, and liquor and coffee were correlated with .20
metabolites at the FDR threshold of 0.05.

The use of multiple samples from 30 individuals collected 1 y
apart provided important information about the within-individual
variability of metabolites (Table 5); the 1-y ICCs were variable
but reasonable, with a range of 0.27–0.89. The median intra-
assay CV, calculated by using replicate samples from a separate
source of pooled serum, was 0.10 (IQR: 0.04–0.21).

To inform future study design, we used our data to determine
the sample size that would be necessary to detect an association
between metabolites and disease, which was measured as an RR.
Considering dietary groups that had significant correlations with
metabolites (Table 3), we then determined the sample size needed
to have 80% power to detect an association in a 1:1 case-control
study. For a large effect (RR = 3.0), sample sizes of w200–400

would be sufficient for most metabolites, whereas smaller ef-
fects (RR = 1.5) can only be detected in larger samples of
w1100–3000 (Table 5). As expected, the number of individuals
needed is smaller for metabolites with lower within-subject
variability, and when possible, we should collect multiple bi-
ological specimens per subject to obtain a better estimate of
usual metabolite levels. For example, to determine an associa-
tion between the main citrus metabolite, stachydrine, and
a health outcome and assuming an RR of 1.5, one would need
a sample size of 2813 individuals; with a second specimen, the
required sample size is reduced to 1898. Higher RRs can be
detected with smaller samples; for stachydrine and an RR of 3.0,
398 individuals would be required with one specimen compared
with 269 individuals with 2 specimens.

DISCUSSION

With the use of strict correction for multiple comparisons, the
application of metabolomics to an epidemiologic data set detected
39 metabolites of known identity that were correlated with a total
of 13 dietary groups. Metabolite levels were reproducible and
stable over a year, indicating that metabolomics can be informative
for nutritional epidemiologic studies. Moreover, the sample sizes
needed to design an adequately powered study of metabolites and
disease risk are realistically attainable.

Identification of biomarkers of diet

Our data replicated and validated findings from previous
targeted biomarker studies, which supports the specificity and
validity of our study. For example, previous studies also found
correlations between citrus and stachydrine (29), which has been

TABLE 4

Top 20 metabolites associated with the HEI 2010 in a nested study within

the PLCO Cancer Screening Trial1

Metabolite Correlation (r) P

g-Tocopherol 20.275 4.72 3 10210*

Methyl palmitate (15 or 2) 20.187 2.82 3 1025*

Threonate 0.173 1.06 3 1024*

Pyridoxate 0.173 1.07 3 1024*

1-Arachidonoylglycero-

phosphoethanolamine

20.173 1.08 3 1024*

Pantothenate 0.170 1.42 3 1024

N-acetylalanine 20.160 3.34 3 1024

17-Methylstearate 20.155 5.14 3 1024

a-Tocopherol 0.153 6.46 3 1024

Hexanoylcarnitine 20.152 6.80 3 1024

a-CEHC glucuronide 0.147 1.00 3 1023

1,7-Dimethylurate 20.146 1.00 3 1023

Stearoyl sphingomyelin 20.144 1.00 3 1023

1-Linoleoylglycero-

phosphoethanolamine

20.142 1.00 3 1023

1-Docosahexaenoylglycero-

phosphocholine

0.142 2.00 3 1023

2-Arachidonoylglycero-

phosphoethanolamine

20.140 2.00 3 1023

cis-Vaccenate (18:1n–7) 20.140 2.00 3 1023

3-Methoxytyrosine 20.140 2.00 3 1023

Theobromine 20.138 2.00 3 1023

Androsteroid monosulfate 1 20.138 2.00 3 1023

1HEI was treated as a continuous variable. The strongest associations

were selected by the smallest P value. Partial Pearson correlations adjusted

for age, sex, smoking status (current smokers, former/never smokers), total

energy intake (kcal/d), and multivitamin/supplement use (yes or no).

The significance threshold was set at the Bonferroni-corrected level of

P , 1.214 3 1024 (0.05/412 known metabolites). Significant associations are

indicated with an asterisk. HEI, Healthy Eating Index; PLCO, Prostate, Lung,

Colorectal, and Ovarian; a-CEHC, 2,5,7,8-tetramethyl-2(2#-carboxyethyl)-
6-hydroxychroman.

FIGURE 1. Many more metabolites are statistically associated with food
groups by using the less conservative FDR method, as opposed to the Bon-
ferroni method, for multiple testing correction. Only food groups with sig-
nificant Bonferroni-corrected correlations are included. Each food group
shown has at least one significant metabolite at an FDR of 0.01, and many
more metabolites are found as the stringency of the FDR threshold is re-
laxed. FDR, false discovery rate.
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identified as a biomarker of citrus in feeding studies (30) and
urine metabolomics studies (10, 31). Scyllo- and chiro-inositol,
also correlated with citrus intake in our study, have been pre-
viously associated with orange and citrus juice consumption (32).
With regard to alcohol intake, several of the correlations we ob-
served were lipid metabolites, which have previously been shown
to contribute to an overall metabolomic profile of alcohol con-
sumers (33). Some of the strongest associations we observed were
for coffee components or downstream metabolites of these com-
ponents (34, 35). Interestingly, we detected some correlations
that may reflect co-consumption of other food items: for example,
the association between DHA and rice, which may actually reflect
co-consumption of rice with fish; DHA is an omega-3 fatty acid
in fish oil and the correlations are of comparable strength.

In addition to identifying associations that have previously
been reported in targeted biomarker studies, we identified many
novel serum metabolite and diet correlations. The serum me-
tabolites 4-vinylphenol sulfate and tryptophan betaine both
reflected peanut consumption. The association of 4-vinylphenol
sulfate, a xenobiotic involved in benzoate metabolism, with
peanut consumption is plausible because it has previously been
identified as a component in roasted peanuts (36). Tryptophan
betaine, also known as hypaphorine, is an indole alkaloid that has
been previously detected in legumes (37–39). A small study in
breastfeeding mothers reported its presence in breast milk and
also an association with peanut consumption (40). Moreover,
many unnamed metabolites identified herein were also corre-

lated with diet and therefore may be novel biomarkers; however,
all food groups that were significantly correlated with unnamed
metabolites were also correlated with identified metabolites.

Scoring higher on the HEI was negatively correlated with
g-tocopherol levels, which is consistent with the fact that g-
tocopherol is a major component of fried foods. Furthermore,
a higher HEI score was positively associated with a-tocopherol,
which is mainly found in healthier foods such as nuts, seeds,
vegetable oils, and leafy greens. Even after adjustment for
multivitamin/supplement use, most of the correlations with HEI
were for vitamins or their constituents or metabolites, suggest-
ing that these correlations are biologically plausible.

Our agnostic approach allowed the identification of novel as-
sociations and overcame the main challenges of traditional bio-
marker development, which typically necessitates the determination
of biomarker kinetics, laboratory variability inmeasurement, and the
capability of the biomarker signal to surpass laboratory error. By
design, we identified biomarkers whose signals surpass this
threshold. Further studies are needed to confirm the robust nature of
our study design and the correlations we identified.

Implications for future studies

Our study used the Bonferroni method to correct for multiple
comparisons, which reduces the probability of falsely identifying
significant findings. Despite using this strict correction method,

TABLE 5

Sample size required to detect disease-metabolite associations for a case-control study1

Dietary group Top metabolite2 One-year ICC3 No. of specimens

RR4

1.5 2.0 3.0

Citrus Stachydrine 0.35 1 2813 999 398

2 1898 674 269

Red meat Indolepropionate5 0.81 1 1589 564 225

2 1286 457 182

Fish CMPF 0.33 1 2852 1012 404

2 1917 681 272

Butter Methyl palmitate (15 or 2) 0.62 1 1678 566 226

2 1332 446 181

Peanuts Tryptophan betaine 0.74 1 1345 478 191

2 1163 413 165

Coffee Trigonelline (N#-methylnicotinate) 0.74 1 1326 471 188

2 1154 410 163

Beer 16-Hydroxypalmitate 0.42 1 1967 698 279

2 1475 524 209

Liquor Ethyl glucuronide 0.27 1 3528 1253 500

2 2255 801 319

Multivitamin Pantothenate 0.89 1 1245 442 176

2 1114 395 158

1Total sample size, assuming 1:1 matching on case-control status. The metabolite with the strongest significant correlation was selected for each dietary

group. Exceptions are for greens, shellfish, rice, and total alcohol because of the strongest metabolite correlation being shared in common (greens and shellfish

both had CMPF as the most strongly correlated metabolite, which is already shown for fish; the most strongly correlated metabolite for total alcohol is ethyl

glucuronide, which is already shown for liquor) and correlations that may reflect other foods (rice and DHA). Correlations were positive unless otherwise

indicated; 80% power, P = 0.05. CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF is also the top metabolite for green vegetables and

shellfish); ICC, intraclass correlation coefficient.
2Top metabolite for partial Pearson correlation between dietary groups and metabolites; the lowest P value is the top metabolite.
3One-year ICC is a measure of the similarity between 2 specimens from the same individual with dates of blood collection separated by 1 y; n = 30

participants.
4RR compares risk for the fourth compared with the first quartile; true RR is measurement error corrected.
5Negative correlation between dietary group and metabolite.
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multiple significant associations between serum metabolites and
dietary variables were detected in our study. If we are willing to
accept a higher error rate (FDR = 0.05), we would detect 1396
associations between metabolites and self-reported dietary var-
iables (data not shown). Therefore, it is likely that there are many
more true associations, but we lack the study power to detect
them. The number of correlations by FDR cutoff, which are
shown in Figure 1, provides a glimpse into the number of as-
sociations to be found with each food group.

We explored the variability in selected metabolites and the
effect this may have on statistical power for planning future
epidemiologic studies. The collection of multiple specimens per
person would provide more precise measurements of the usual
metabolite profile. In considering the use of metabolites in studies
of disease, it is noted that large sample sizes are required, even
among the metabolites most highly correlated with diet. Samples
of this size, however, are attainable in epidemiologic cohorts. The
reproducibility and relative stability of biomarker peak inten-
sities, as assessed by the strong ICCs we observed, support the
feasibility of applying metabolomics to epidemiologic data sets.

This study has many strengths, including the large sample size,
richness of the dietary data, and large number of metabolites
detected. Metabolomics analyses are an efficient use of biological
samples, compared with candidate metabolite assays, when bio-
specimens are limited in large prospective studies. Biomarkers with
correlations that cross our strict statistical significance threshold are,
by their very nature, robust given that the signal is strong enough to
be detected.

The main limitation of our study is that we compared a single
serum sample with self-reported diet, and dietary questionnaires
are known to result in substantial measurement error. However,
measurement error in dietary intake would be expected to bias
results toward the null, and we detected many significant cor-
relations. Although the FFQ was extensive, we are limited in our
ability to distinguish certain subtypes of foods that may be
differentially associated with metabolites. Furthermore, we ac-
knowledge that there are many ways to categorize dietary data.
The categorization we used was primarily based on the USDA’s
MyPlate classification (14); we also considered subgroups based
on proposed biological components of foods. The similarity in
metabolites associated with dietary groups and their individual
food components (data not shown) suggests that our conclusions
are not dependent on the food group classification.

Our findings may not be generalizable because participants
were largely white, and thus we may have missed correlations
with foods specific to certain ethnic groups. The results we did
observe, however, are highly generalizable, specific, and show
strong associations. Any metabolomics study is inherently lim-
ited by the set of metabolites detected by a specific platform. We
lacked information on absolute levels of serum metabolites be-
cause they were measured as peak intensities rather than as
actual concentrations, which is a limitation. Last, variability in
serum metabolites could be greatly influenced by the gut
microbiota; for example, differences in metabolite levels may
be attributable to differences in the gut microbiota rather than
differences in dietary intake. The gut microbiota does change
with age (41); however, it is thought to be relatively stable after
early childhood (42). Although we were unable to assess the gut
microbiome directly within this sample, there were no differ-
ences in the main findings by age.

In conclusion, the large number of correlations between self-
reported diet and serum metabolites confirms that metabolomics
can be applied to epidemiologic studies for identification of novel
dietary biomarkers. There is a need for specific, reliable bio-
markers that accurately reflect dietary intake and that can be
applied to many populations. We emphasize, however, that al-
though we appear to have uncovered objective biomarkers of diet,
it should not yet be assumed that these biomarkers outperform
self-report as a measure of usual dietary intake. Ultimately,
whether a biomarker is a good measure of usual diet depends on
the frequency of consumption of the food or nutrient, as well as
the half-life of the metabolite. In addition, the identification of
serologic metabolites not only reflects dietary intake but also
metabolic processes, including the effects of genetic variation
and the gut microbiota. Nevertheless, our metabolomic approach
for identifying potential dietary biomarkers showed viable bio-
markers for further investigation in feeding studies.
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